This post is also available in: 日本語 (Japanese)
I made a note, how to bulk convert data type of dataframe columns by for loop, when working with pandas dataframes.
I am writing a sample code, 'Convert all columns data type' pattern, and 'Convert columns data type except for some columns'
These sample code are usefull, when you handle a lot of dataframe columns.
Convert all columns data type
import pandas as pd
# Sample data
sample_list = {'sampleA':[1,2,3],
'sampleB':[4,5,6]}
# Create dataframe
df = pd.DataFrame(sample_list)
print(df)
"""
sampleA sampleB
0 1 4
1 2 5
2 3 6
"""
# loop dataframe columns
for i in df.columns:
df[f'{i}'] = df[f'{i}'].astype(float)
print(df)
"""
sampleA sampleB
0 1.0 4.0
1 2.0 5.0
2 3.0 6.0
"""
Convert columns data type except for some columns
import pandas as pd
# Sample data
sample_list = {'sampleA':[1,2,3],
'sampleB':[4,5,6],
'sampleC':['A','B','C']}
# Create dataframe
df = pd.DataFrame(sample_list)
print(df)
"""
sampleA sampleB sampleC
0 1 4 A
1 2 5 B
2 3 6 C
"""
# exclude list of columns name
exclude_list = ['sampleC']
# loop dataframe columns, but exclude if columns name are in the exclude_list
for i in df.columns:
if i not in exclude_list:
df[f'{i}'] = df[f'{i}'].astype(float)
print(df)
"""
sampleA sampleB sampleC
0 1.0 4.0 A
1 2.0 5.0 B
2 3.0 6.0 C
"""
No tags for this post. 
