This post is also available in: 日本語 (Japanese)
I made a note, how to bulk convert data type of dataframe columns by for loop, when working with pandas dataframes.
I am writing a sample code, 'Convert all columns data type' pattern, and 'Convert columns data type except for some columns'
These sample code are usefull, when you handle a lot of dataframe columns.
Convert all columns data type
import pandas as pd # Sample data sample_list = {'sampleA':[1,2,3], 'sampleB':[4,5,6]} # Create dataframe df = pd.DataFrame(sample_list) print(df) """ sampleA sampleB 0 1 4 1 2 5 2 3 6 """ # loop dataframe columns for i in df.columns: df[f'{i}'] = df[f'{i}'].astype(float) print(df) """ sampleA sampleB 0 1.0 4.0 1 2.0 5.0 2 3.0 6.0 """
Convert columns data type except for some columns
import pandas as pd # Sample data sample_list = {'sampleA':[1,2,3], 'sampleB':[4,5,6], 'sampleC':['A','B','C']} # Create dataframe df = pd.DataFrame(sample_list) print(df) """ sampleA sampleB sampleC 0 1 4 A 1 2 5 B 2 3 6 C """ # exclude list of columns name exclude_list = ['sampleC'] # loop dataframe columns, but exclude if columns name are in the exclude_list for i in df.columns: if i not in exclude_list: df[f'{i}'] = df[f'{i}'].astype(float) print(df) """ sampleA sampleB sampleC 0 1.0 4.0 A 1 2.0 5.0 B 2 3.0 6.0 C """No tags for this post.